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Abstract

The effects of added manufactured viscous dampers upon shear-type structures are analytically
investigated here for the class of Rayleigh damping systems. The definitions of mass proportional damping
(MPD) and stiffness proportional damping (SPD) systems are briefly recalled and their physical
counterpart is derived. From basic physics, a detailed mathematical demonstration that the first modal
damping ratio of a structure equipped with the MPD system is always larger than the first modal damping
ratio of a structure equipped with the SPD system is provided here. All results are derived for the class of
structures characterised by constant values of lateral stiffness and storey mass, under the equal ‘‘total size’’
constraint. The paper also provides closed form demonstrations of other properties of modal damping
ratios which further indicate that the MPD and the SPD systems are respectively characterised by the
largest and the smallest damping efficiency among Rayleigh damping systems subjected to base excitation.
A numerical application with realistic data corresponding to an actual seven-storey building structure is
presented to illustrate and verify the theoretical findings.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Dissipative systems have widely proven their effectiveness in mitigating seismic effects in shear-
type structures and have been the object of many research works [1–9]. Still the issue is open in
see front matter r 2005 Elsevier Ltd. All rights reserved.
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terms of identifying the additional damper system that maximises the overall dissipative
properties of the structure under a wide range of dynamic inputs and with reference to various
performance indexes. In fact, for shear-type structures, several research works have proposed
algorithms for the numerical identification of the damper system, often referred to as ‘‘optimal’’
damper system, that optimises the performances with reference to (a) a selected performance
index, (b) a given dynamic input and (c) a specific structure. The validity of these works resides
mainly in the formulation of the optimisation algorithms.
Furthermore, in the body of the up to date researches available in literature, the search for the

‘‘optimal’’ damper system takes into consideration only dampers positioned between adjacent
storeys, thus neglecting other arrangements technically and physically implementable in shear-
type structures. For example, the ‘‘Osaka International Convention Center’’ [10,11] (in Osaka,
Japan, completed in 2000) and the ‘‘Wallace Bennett Federal Building’’ [12–14] (in Salt Lake City,
USA, completed in 2002) make use of dissipative devices that connect non-adjacent storeys.
In this work, the authors aim at identifying the ‘‘optimal’’ damper system through studies based

upon the physical properties of Rayleigh damping matrix, taking also in consideration a new way
of inserting viscous dampers into structures which sees these devices connecting each storey to a
fixed point.
2. The equations of motion for damped shear-type structures

For a generic N-storey linear elastic shear-type frame structure subjected to a dynamic
excitation p(t), the equations of motions can be written, in time domain, as follows [15,16]:

M€u tð Þ þ C_u tð Þ þ Ku tð Þ ¼ p tð Þ, (1)

where M is the mass matrix, K is the stiffness matrix, C is the damping matrix and u(t) is the
displacement vector representing the displaced shape of the system, as given in Fig. 1. A dot over a
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Fig. 1. The generic N-storey linear elastic shear-type frame structure.
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symbol indicates differentiation with respect to time. Always with reference to Fig. 1:

M ¼

m1 0 ::: ::: 0

0 m2 0 ::: :::

::: 0 :::

mi

::: :::

::: mN�1 0

0 ::: ::: 0 mN

2
666666666664

3
777777777775

(2)

with mi representing the mass of the ith storey;

K ¼

k1 þ k2 �k2 0 ::: 0

�k2 k2 þ k3 �k3 0 ::: :::

0 �k3 k3 þ k4 :::

::: ::: :::

::: ::: 0

::: ::: kN�1 þ kN �kN

0 ::: �kN kN

2
666666666664

3
777777777775

(3)

with ki representing the total lateral stiffness of the vertical elements connecting the ith storey to
the (i-1)th storey (to the ground if i ¼ 1);

u tð Þ ¼

u1 tð Þ

u2 tð Þ

:::

ui tð Þ

:::

uN tð Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(4)

with ui(t) being the physical displacement of the ith degree of freedom (as computed with respect
to the base, see Fig. 1);

p tð Þ ¼

p1 tð Þ

p2 tð Þ

:::

pi tð Þ

:::

pN tð Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
, (5)

where pi(t) is the dynamic loading acting at the ith degree of freedom.
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Note that, given the purposes of the analyses developed in this paper (identification of the
‘‘optimal’’ damper system), the exact form of matrix C is still undetermined. In general terms, C is
a N �N matrix which can be full, banded or diagonal depending on the system of added viscous
dampers which is introduced into the structure:

C ¼

c11 c12 ::: c1j ::: c1N

c21 c22 ::: c2j ::: c2N

::: ::: ::: :::

ci1 ci2 cij ciN

::: ::: ::: :::

cN1 cN2 ::: cNj ::: cNN

2
6666666664

3
7777777775

(6)

with cij representing the force corresponding to degree of freedom i due to unit velocity of degree
of freedom j (with all other degrees of freedom having a constant null displacement).

3. The systems of added viscous dampers which lead to Rayleigh damping matrix

In the dynamic systems considered in this paper internal damping is neglected, so that the
damping matrix derives from the effects of added viscous dampers only. The added viscous
dampers are here modelled by means of a linear force–velocity relationship Fd ¼ c � v, where Fd is
the force provided by the damper, c is its damping coefficient and v is the relative velocity between
the two damper ends.
Let us consider an ensemble (system) of added viscous dampers which leads, for the generic N-

storey linear elastic shear-type frame structure described in Section 2, to a Rayleigh damping
matrix C

R [15,16]. The Rayleigh damping matrix has the following expression:

CR
¼ aMþ bK, (7)

where M and K are, respectively, the mass matrix and the stiffness matrix given in Section 2 and a
and b are two constants having, respectively, units of s�1 and s.
For the sake of clarity, the system of added viscous dampers defined above is referred herein to

as ‘‘Rayleigh damping system’’ and structures characterised by a Rayleigh damping system will be
indicated hereafter as ‘‘Rayleigh damped’’ structures. As an illustrative example, Fig. 2 provides
the physical representation of a six-storey ‘‘Rayleigh damped’’ shear-type structure. This physical
representation is simply obtained from Eq. (7) and from the definition of cij.
Eq. (7) leads also to the definition of the following two limiting cases:
�
 a system of added viscous dampers which leads to a damping matrix proportional to the mass
matrix only (mass proportional damping matrix—MPD matrix), as given by

CMPD
¼ aM. (8)
�
 a system of added viscous dampers which leads to a damping matrix proportional to the
stiffness matrix only (stiffness proportional damping matrix—SPD matrix), as given by

CSPD
¼ bK. (9)
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For the sake of clarity, the system of added viscous dampers which leads to an MPD matrix is
referred herein to as ‘‘MPD system’’ and structures characterised by an MPD system will be
indicated hereafter as ‘‘MPD structures’’. Similarly, the system of added viscous dampers which
leads to an SPD matrix is referred herein to as ‘‘SPD system’’ and structures characterised by an
SPD system will be indicated hereafter as ‘‘SPD structures’’. As illustrative examples, Figs. 3a and
b provide physical representations of a six-storey MPD structure and of a six-storey SPD
structure, respectively.

Note that CR
¼ CMPD

þ CSPD.

Inspection of Figs. 3a and b shows that the MPD system and the SPD system correspond to
two physically separated and independently implementable damper systems. Note that the
dampers of the MPD system (ami) link each storey to a fixed point (ground), while the dampers of
the SPD system (bki) link each storey to the adjacent one. At once, as a result of this new
observation, an alternative definition of MPD and SPD systems can be given in terms of damper
placement and damper sizing:

Fig. 2. Six-storey shear-type structure equipped with Rayleigh damping system.
�
 MPD system: dampers are placed so that they connect each storey to a fixed point (ground or
infinitely stiff vertical lateral-resisting element, as schematically represented in Figs. 3a and 4,
respectively, for a six-storey shear-type structure) and are sized so that each damping coefficient
is proportional to the corresponding storey mass (mi);

�
 SPD system: dampers are placed so that they connect adjacent storeys (Fig. 3b), and are sized
so that each damping coefficient is proportional to the total lateral stiffness of the vertical
elements that connect the same two storeys (ki).

This is a new observation which opens up new possibilities of facing in an innovative, across-the-
board manner the problem of optimal damper insertion in shear-type structures, by taking into
consideration damper placements other that the traditional interstorey one. As far as the actual
applicability of MPD systems in real building structures is concerned (SPD systems can be obtained
placing dampers between adjacent storeys, as per the common damper setup), the interested reader is
referred to Ref. [17–20]. In these works, the authors face this issue with specifically dedicated sections
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Fig. 3. Six-storey shear-type structure equipped with (a) MPD system (using the ground as fixed point) and (b) SPD

system.
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and identify two ways of implementing MPD systems: (i) using long buckling-resistant dampers
capable of connecting to the ground floors up to three storey high (which are already available in the
market place [10–14]) and (ii) placing the dampers between the floors and a very stiff vertical lateral-
resisting element (e.g., concrete core or adjacent structure), as per Fig. 4, as also suggested (although
without recognising the connection with the MPD system) by other authors [21–23].
4. The shear-type structures considered

The analytical results developed in the forthcoming sections refer to shear-type buildings having
the following characteristics:
�
 total number of storeys NX2;

�
 horizontal stiffness of the vertical elements connecting adjacent floors which does not vary
along the height of the structure, i.e. ki ¼ k, 8i (this hypothesis is realistic for steel frame
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structures and may be assumed as correct for reinforced-concrete frame structures up to
four–five storeys high);

�
 storey mass which does not vary along the height of the structure, i.e. mi ¼ m, 8i (this
hypothesis is realistic for most frame structures).
These stiffness and mass values allow to define the following reference circular frequency:

o0 ¼

ffiffiffiffi
k

m

r
.

Under the above hypotheses, the mass and the stiffness matrices become

MN ¼ m

1 0 ::: ::: 0

0 1 0 ::: :::

::: 0 :::

::: :::

::: 1 0

0 ::: ::: 0 1

2
666666666664

3
777777777775

N�N

, (10)
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KN ¼ k

2 �1 0 ::: 0

�1 2 �1 0 ::: :::

0 �1 2 :::

::: ::: :::

::: ::: 0

::: ::: 2 �1

0 ::: �1 1

2
666666666664

3
777777777775

N�N

. (11)

Here and in the following, the subscript N �N indicates the matrix size.
5. A constraint upon the total size of the damper systems

In order to make meaningful comparisons of the dissipative performances offered by different
damper systems, it is necessary to introduce a constraint upon their total size. The total size
(roughly representative of the cost of the damping systems), ctot, of a generic damper system made
up of M added viscous dampers is defined herein as the sum of the damping coefficients, cj, of all
M viscous dampers, as expressed by

XM
j¼1

cj ¼ ctot. (12)

When various damper systems are compared, the equal ‘‘total size’’ constraint implies that all
systems must have the same value, c̄, of the total size, ctot.
For the class of shear-type structures considered in this paper, imposing the equal ‘‘total size’’

constraint to the MPD and the SPD systems leads to the following results (note that, for N-storey
shear-type structures, the MPD and the SPD systems are characterised by M ¼ N):
�
 the a and b parameters assume the following specific values ā and b̄:

ā ¼
c̄

Nm
¼

c0

m
for the MPD system; (13)

b̄ ¼
c̄

Nk
¼

c0

k
for the SPD system (14)

with c0 ¼
c̄
N
;

�
 the MPD and the SPD systems are made up of N equally sized dampers (each one
characterised by c0 ). This is obtained firstly from substitution in Eq. (8) of the values ā and
M given by Eqs. (13) and (10), respectively, and from substitution in Eq. (9) of the values b̄
and K given by Eqs. (14) and (11), respectively, and secondly from comparison of
the matrices of Eqs. (8) and (9) thus obtained with their physical counterparts given by
Figs. 3a and b.
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Note that Eqs. (13) and (14) lead to the following relationship between the ā and b values that
guarantees the satisfaction of the equal ‘‘total size’’ constraint, independently of c̄:
¯

ā ¼ b̄o2
0. (15)

For the class of shear-type structures considered in this paper, imposing the equal ‘‘total size’’
constraint to a generic Rayleigh damping system leads to the identification of a class of Rayleigh
damping systems characterised by the following specific values āR and b̄

R
of the a and b

parameters:

āR ¼ ā 1� gð Þ and b̄
R
¼ b̄g, (16)

where g is a dimensionless parameter with values ranging between 0 and 1, that identifies each
specific Rayleigh system within the class defined above. Note that g ¼ 0 identifies the MPD
system, whilst g ¼ 1 identifies the SPD system.
6. Modal damping ratios of structures equipped with MPD and SPD systems

For classically damped multi-degree-of-freedom (MDOF) systems, it is possible to define a
damping ratio for each mode of vibration [15,16]. For Rayleigh-damped structures, it is well
known that the ith modal damping ratio, xR

i , expressed according to the notation of Eq. (7), is
given by

xR
i oið Þ ¼

a
2oi

þ
boi

2
, (17)

where oi is the ith modal (undamped) circular frequency of the MDOF system.
Specialising Eq. (17) to structures equipped with MPD system only, leads to

xMPD
i oið Þ ¼

a
2oi

. (18)

Similarly, for structures equipped with SPD system only

xSPDi oið Þ ¼
boi

2
. (19)

The above equations clearly show that the MPD and the SPD systems, in addition to being
physically separated as given in Section 3, display completely different damping properties:
�
 structures equipped with MPD systems are characterised by a modal damping ratio which
progressively (hyperbolically) decreases as the modal frequency gets higher and higher;

�
 structures equipped with SPD systems are characterised by a modal damping ratio which
linearly increases as the modal frequency gets higher and higher.

For the structures here considered (Section 4), imposing to Eqs. (18), (19) and (17) the equal
‘‘total size’’ constraint in the form of Eqs. (15) and (16) leads to

xMPD
i ¼

ā
2oi

¼
ā

2o0

o0

oi

� �
¼

x0
Xi

, (20)
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xSPDi ¼
b̄oi

2
¼

āoi

2o2
0

¼
ā

2o0

oi

o0

� �
¼ x0Xi, (21)

xR
i ¼

āR

2oi

þ
b̄

R
oi

2

¼
ā
2oi

1� gð Þ þ
b̄oi

2
g

¼ xMPD
i 1� gð Þ þ xSPDi g

¼ xMPD
i � g xMPD

i � xSPDi

� �
, ð22Þ

where
�
 Oi ¼ oi=o0 is the ith normalised circular frequency (with respect to the reference circular
frequency o0); � � ffiffiffiffiffiffiffip ffiffiffiffiffiffiffip�

�
 x0 ¼ ā ð= 2o0Þ ¼ b̄ ð2o0Þ ¼ c̄ ð2N kmÞ ¼ c0 ð2 kmÞ is a reference damping ratio that only
depends on the characteristics of the structure (k, m and N) and the total size (c̄) of the damping
system. It is worth pointing out that x0 corresponds to the damping ratio of a single-storey
shear-type structure with lateral stiffness equal to k, floor mass equal to m and damper
coefficient equal to c0.

From Eqs. (20) and (21), it can be deduced that

xSPDi

xMPD
j

¼ OiOj (23)

and

xSPDi

xMPD
i

¼ O2
i . (24)

It is clear that:
�
 if Oi ¼ 1, then xMPD
i ¼ x0 ¼ xSPDi ;
�
 if Oio1, then xMPD
i 4x04xSPDi ;
�
 if Oi41, then xMPD
i ox0oxSPDi .
Specialising Eq. (24) for i ¼ 1 leads to

xSPD1

xMPD
1

¼ O2
1. (25)

From Eq. (25) it is clear that, if, for a given structure among those here considered, O1 is smaller
than unity (as will be demonstrated in the following sections), then the insertion into the structure
of an MPD system leads to a damping ratio of the fundamental mode of vibration which is larger
than that given by the insertion into the structure of an SPD system.
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Also from Eq. (22) it is clear that, if, for a given structure among those here considered, O1 is
smaller than unity, then the insertion into the structure of an MPD system leads to a damping
ratio of the fundamental mode of vibration which is larger than that given by the insertion into
the structure of any Rayleigh damping system.
Note that the value of O1 is a physical property of the system and, therefore, the above

considerations are independent from the type of the excitation. Nonetheless, identifying a
damping system which leads to the largest damping ratio in the first mode of vibration is of
particular interest for building structures under base excitation (such as earthquake inputs), given
that their dynamic response is greatly influenced by the first mode of vibration.
7. On the eigenproblem leading to the determination of Xi

For the generic N-storey shear-type structure here considered, the N modal (undamped)
circular frequencies, oi, of the system are given by the square roots of the eigenvalues, li, ðoi ¼ffiffiffiffi
li

p
Þ of the following eigenproblem:

KN � lMN ¼ 0, (26)

where 0 is a N-dimensional vector of all zero values.
Defining the following numerical matrix:

AN ¼
1

o2
0

KNM
�1
N ¼

2 �1 0 ::: 0

�1 2 �1 0 ::: 0

0 �1 2 ::: ::: :::

::: 0 ::: ::: :::

::: ::: �1 0

�1 2 �1

0 ::: ::: 0 �1 1

2
666666666664

3
777777777775

N�N

(27)

the eigenvalue problem of Eq. (26) can be expressed as follows:

AN � LIN ¼ 0, (28)

where
�
 IN is the identity matrix of order N;

�
 the eigenvalues Li of Eq. (28) are related to the eigenvalues li of Eq. (26) as follows:
Li ¼
li

o2
0

¼
o2

i

o2
0

¼ O2
i . (29)

By definition, Li are the N zeros (roots) [24–28] of the characteristic polynomial pN(L) of the
numerical matrix AN, as given by

pN Lð Þ ¼ det AN � LINð Þ. (30)
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Note that Li: (a) are independent of k and m, and (b) provide direct information on the modal
damping ratios of the structures equipped with MPD and SPD systems as given by Eqs. (24)
and (29).

pN(L) can also be expressed in the general form

pN Lð Þ ¼ a0 þ a1Lþ � � � þ aN�1L
N�1
þ aNL

N , (31)

where a0, a1, y, ai, y, aN–1 and aN are constant coefficients.
The properties of matrix AN allow to show that (as demonstrated in Appendices A.2–A.5) a0,

a1, aN and aN–1 have the following values:

a0 ¼ 1, (32.1)

a1 ¼ �
N N þ 1ð Þ

2
, (32.2)

aN ¼ �1ð Þ
N , (32.3)

aN�1 ¼ �1ð Þ
N�1 2N � 1ð Þ. (32.4)

In the following, in order to distinguish between the coefficients of polynomials of different degree
N, the notation ‘‘ai,N’’ will be used, which indicates the multiplicative coefficient of the term of
degree i of the characteristic polynomial of the N �N matrix AN. Similarly, ‘‘Li,N’’ or ‘‘Li(N)’’
will represent the ith eigenvalue of the N �N matrix AN.
8. On the first modal damping ratios

In this section, a detailed analysis of the values assumed by L1,N will be performed. Thanks to
Eqs. (20), (21), (25) and (29), the results obtained for L1,N will allow a number of considerations
regarding the relative values of xMPD

1 and xSPD1 to be drawn.
Given that the numerical matrix AN of Eq. (27) is real and symmetric, all eigenvalues Li are real

[24–28]. Furthermore, being AN positive definite (as it is the product of two positive definite
matrices multiplied by a positive real scalar), all eigenvalues Li are strictly positive [26–28].
Therefore, by numbering the eigenvalues Li from the smallest to the largest, it is possible to write:

0oL1pL2p � � �pLN . (33)

8.1. On the values of L1

From mathematics [29] it is known that, for the polynomial of degree NX1:

pN xð Þ ¼ b0 þ b1xþ � � � þ bN�1x
N�1 þ bNxN , (34)

the following relationships exist between the N zeros xi and the N þ 1 complex coefficients b0, y,
bN–1, bN:

x1 þ x2 þ . . .þ xN ¼
XN

i¼1

xi ¼ �1ð Þ
1 bN�1

bN

(35.1)
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x1x2 þ x1x3 þ . . .þ xN�1xN ¼
XN

i¼1

XN

j¼iþ1

xixj ¼ �1ð Þ
2 bN�2

bN

� � � ð35:2Þ

x1x2 . . . xN�1 þ x1x2 . . .xN�2xN þ . . .þ x2x3 . . . xN ¼ �1ð Þ
N�1 b1

bN

(35.N-1)

x1x2 . . .xN ¼
YN
i¼1

xi ¼ �1ð Þ
N b0

bN

. (35.N)

Specialising the above relationships for the polynomial of Eq. (30) (substitution of Eqs. (31) and
(32) into Eqs. (35.1) and (35.N)) leads to:

L1 þ L2 þ . . .þ LN ¼ �
aN�1

aN

¼ �
�1ð ÞN�1 2N � 1ð Þ

�1ð ÞN
¼ 2N � 1 (36)

L1L2 . . .LN ¼ �1ð Þ
N a0

aN

¼ �1ð ÞN
1

�1ð ÞN
¼ 1. (37)

From Eq. (37) it results that:
(a)
 either all Li are equal to unity,

(b)
 or at least one Li is strictly smaller than unity and at least one Li is strictly larger than unity.
However, only case (b) is possible, because, if case (a) were true, then:

L1 þ L2 þ . . .þ LN ¼ N (38)

which does not satisfy Eq. (36), given that

No2N � 1 for NX2 here considered: (39)

Therefore

L1o1, (40)

LN41. (41)

Eqs. (25), (29) and (40) lead to the fundamental result

xSPD1

xMPD
1

¼ O2
1 ¼ L1o1. (42)

From basic physics and mathematics, it is thus shown that, for the class of shear-type structures
characterised by constant values of lateral stiffness, k, and storey mass, m, and by a total number
of storey NX2, the MPD system provides the structure with a first modal damping ratio which is
larger than that provided by the SPD system and any Rayleigh damping system (from Eqs. (22)
and (42)) that satisfy the equal ‘‘total size’’ constraint.
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8.2. An upper bound for L1,N

In this section the attention is focused on the values of L1,N (which belongs to the interval (0,1),
as given above) with the aim of obtaining an upper bound as a function of N.
Let us define:

f N Lð Þ ¼
pN�2 Lð Þ
pN�1 Lð Þ

. (43)

Given that (as will be demonstrated in Appendix A.1):

pN Lð Þ ¼ 2� Lð ÞpN�1 Lð Þ � pN�2 Lð Þ (44)

the zeros (Li,N) of pNðLÞ ¼ 0 correspond to the intersections between:
�

0
0

1

2

3

4

5

(a)

Fig

N

the straight line gðLÞ ¼ 2� L,

�
 and the function fN(L)
and therefore L1,N corresponds to the first intersection which occurs for LA(0,1).
As illustrative examples, see Figs. 5a and b for graphical representations of the above curves

within the interval LA(0,1).
Eq. (43) gives that fN(L) has vertical asymptotes in correspondence of the zeros (Li,N�1) of

pN�1(L).
Note that g(L) is monotonically decreasing.
Also, fN(L) is increasing, due to the fact that (as will be demonstrated in Appendix A.6) the first

derivative of fN(L) is always strictly positive.
0.2 0.4 0.6 0.8 1
 

0 0.2 0.4 0.6 0.8 1
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5

Λ1,2Λ1,3
* Λ1,3(b)

Λ

Λ1,2
* Λ1,2

Λ

. 5. g(L) (black thick continuous line), fN(L) (black dashed line), and f �N ðLÞ (black thin continuous line) for (a)

¼ 2 and (b) N ¼ 3.
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Given the above properties and the fact that:
�
 gð0Þ ¼ 2;

�
 fN 0ð Þ ¼

pN�2 0ð Þ
pN�1 0ð Þ

¼
a0;N�2
a0;N�1
¼ 1;
�
 L ¼ L1;N�1 is the first vertical asymptote of fN(L);
from basic geometrical and analytical considerations, it follows that g(L) and fN(L) intersect
between zero and L1,N�1 [29], i.e.

L1;NoL1;N�1. (45)

Furthermore, given that (as will be demonstrated in Appendix A.7) the second derivative of fN(L)
is strictly positive for LA(0,L1,N�1), fN(L) is increasing with an up curvature, between zero and
L1,N�1. It follows that the intersection L�1;N between g(L) and the tangent, f �NðLÞ, to fN(L) at
L ¼ 0 is larger than L1,N [29], i.e.

L1;NoL�1;N . (46)

The tangent f �NðLÞ has the following expression:

f �N Lð Þ ¼ f 0N 0ð ÞLþ f N 0ð Þ (47)

and, computing its intersection with g(L), leads to

L�1;N ¼
2� f N 0ð Þ

1þ f 0N 0ð Þ
. (48)

Given that f Nð0Þ ¼ 1 and f 0Nð0Þ ¼ N � 1 (as will be shown in Appendix A.8)

L�1;N ¼
1

N
(49)

and

L1;No
1

N
8N. (50)
8.3. A close approximation for L1,N

From Eq. (50) we observe that, as N increases, the first root L1,N of the characteristic
polynomial pN(L) of Eq. (30) tends to zero. Therefore, within the interval LA(0,L1,N), pN(L) can
be effectively approximated neglecting the terms of degree higher than one, i.e.

pN Lð Þ ffi p̄N Lð Þ ¼ a0 þ a1L for L 2 0;L1;N

� �
. (51)

In accordance to the above approximation, an estimation L̄1;N of L1,N can be obtained imposing
p̄N Lð Þ ¼ 0, which leads to

L̄1;N ¼
�a0

a1
¼

2

N N þ 1ð Þ
ffi L1;N . (52)

This approximation becomes more and more precise, as N increases, and it is numerically seen to
be very effective for NX6 (see also the applicative example of Section 11).
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8.4. xMPD
1 ; xSPD1 and their ratio as functions of N

As an illustrative example, Fig. 6 shows L1(N) for N varying from 2 to 20, as obtained for the
shear-type structures here analysed. The figure also shows the curves y ¼ 1=N and y ¼
2=ðN2 þNÞ which, as demonstrated before, respectively represent an upper bound and a close
approximation of L1(N).
The properties of L1(N) given by Eqs. (50) and (52), thanks to Eqs. (20), (21), (25) and (29), lead

directly to the following considerations upon xMPD
1 , xSPD1 and xSPD1

�
xMPD
1 :
�

Fi
xMPD
1 4x0

ffiffiffiffiffi
N
p

,

�
 xSPD1 o x0ffiffiffi

N
p ;
�
 xSPD1

xMPD
1

o 1
N
; ffiffiffiffiffiffiffiffiffiffiq
�
 xMPD
1 ffi x0 N2þN

2
;ffiffiffiffiffiffiffiffiffiffiq
�
 xSPD1 ffi x0 2
N2þN

;
SPD
�
 x1
xMPD
1

ffi 2
N2þN

:

Note that, releasing the equal ‘‘total size’’ constraint, with reference to a targeted damping ratio
xt and its corresponding damping coefficient ct ¼ 2xt

ffiffiffiffiffiffiffi
km
p

, imposing that xMPD
1 ¼ xSPD1 ¼ xt leads

to

cMPD ¼ ctO1 ¼ ct

ffiffiffiffiffiffi
L1

p
, (53)

cSPD ¼
ct

O1
¼

ctffiffiffiffiffiffi
L1

p , (54)
2 4 6 8 10 12 14 16 18 20
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g. 6. L1(N) (black dots), y ¼ 1=N (continuous line) and y ¼ 2
�
ðN2 þNÞ (dashed line) for N varying from 2 to 20.
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where cMPD and cSPD represent the damping coefficient of each viscous damper of the MPD and
SPD system, respectively. Eqs. (50), (53) and (54) give that
�
 in order to obtain, for a N-storey structure equipped with the MPD system, a first modal
damping ratio at least as large as the targeted damping ratio xt, it is sufficient to place at every
storey a damper of size ct

� ffiffiffiffiffi
N
p

;

�
 for a N-storey structure equipped with the SPD system, even the placement at every storey of
dampers of size ct

� ffiffiffiffiffi
N
p

leads to a first modal damping ratio smaller than xt.
9. On the damping ratios of higher modes

Let p be the number of roots of the characteristic polynomial of Eq. (30) that are less or equal
than unity. In general

1pppN � 1. (55)

If p ¼ 1, i.e. L1o1, L241; . . . ; LN41, from Eq. (37), it is possible to write

1 ¼ L1L2 . . .LN�1LN4L1 � 1 . . . 1 � LN ¼ L1LN . (56)

It follows that

xSPDN

xMPD
1

¼ O1ON ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
L1LN

p
o1. (57)

Therefore, from Eqs. (21), (29), (33) and (57)

xMPD
1 4xSPDN 4xSPDN�14 � � �4xSPD1 . (58)

On the other hand, if p41, i.e. L1o1; . . . ; Lpp1; Lpþ141; . . . ; LN41, from Eq. (37), it is
possible to write

1 ¼ L1 . . .Lp Lpþ1 . . . LN�p LN�pþ1 . . . LN

4L1 . . .L1 Lpþ1 . . . LN�p LN�pþ1 . . . LN�pþ1

4Lp
1 � 1 . . . 1 � L

p
N�pþ1 ¼ L1LN�pþ1

� �p
ð59Þ

It follows that

xSPDN�pþ1

xMPD
1

¼ O1ON�pþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1LN�pþ1

p
o1. (60)

Therefore, from Eqs. (21), (29), (33) and (60)

xMPD
1 4xSPDN�pþ14xSPDN�p4 � � �4xSPD1 (61)

Moreover, it is also immediate that, for i ¼ 1; 2; . . . ; p� 1:

xSPDi

xMPD
i

¼ O2
i ¼ Lio1 (62)
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and for i ¼ p:

xSPDp

xMPD
p

¼ O2
p ¼ Lpp1. (63)

It is numerically seen that p ¼ ðN þ 2Þ=3
� �

(where [z] indicates the integer part of z) and therefore,
for systems characterised by a large N, it results pffi N=3, which gives that xMPD

i 4xSPDi roughly
for the first N/3 modes of vibration.
10. Other properties of modal damping ratios of MPD and SPD structures

A number of other considerations can be made regarding the modal damping ratios of
structures equipped with MPD and SPD systems.
Taking into consideration the product of the ith modal damping ratios of MPD and SPD

structures, from Eqs. (20) and (21), it can be immediately seen that

xMPD
i xSPDi ¼ x20 ¼ constant: (64)

This equation underlines the opposite dissipative properties of MPD and SPD systems. In fact, if
the ith modal damping ratio of the MPD structure is large, then the ith modal damping ratio of
the SPD structure is small, and vice versa.
Taking into consideration the sum of the squares of all damping ratios of MPD and SPD

structures, from Eqs. (20), (21), (29), (32) and (35), it can be seen that

PN
i¼1

xMPD
i

� �2
PN
i¼1

xSPD
i

� �2 ¼
1
L1
þ 1

L2
þ � � � þ 1

LN

L1 þ L2 þ � � � þ LN

¼

L2L3���LNþL1L3���LNþ���þL1L2���LN�1

L1L2���LN

	 

L1 þ L2 þ � � � þ LN

¼

�1ð ÞN�1a1=aN

�1ð ÞN a0=aN

	 

�1ð Þ1 aN�1

aN

¼
a1aN

a0aN�1
¼
�

N Nþ1ð Þ

2
�1ð ÞN

1 �1ð ÞN�1 2N � 1ð Þ

¼
N N þ 1ð Þ

2 2N � 1ð Þ
¼

N2 þN

4N � 2
. ð65Þ

The geometrical sum of the damping ratios

xg:s: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

x2i

vuut (66)

can be reasonably assumed as performance index of the dissipative effects of the MPD and SPD
systems. The ratio of the two geometrical sums as obtained for the MPD and SPD systems
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.
xSPDg:s: as a function of N (N varying from 2 to 20).
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(denoted as xMPD
g:s: and xSPDg:s: , respectively), thanks to Eq. (65), can be expressed as

xMPD
g:s:

xSPDg:s:

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þN

4N � 2

s
(67)

which is larger than unity for N42 and increases for increasing N, as illustrated in Fig. 7.
11. A numerical application to a shear-type structure subjected to seismic excitation

To provide an illustrative numerical example of the dissipative properties of the MPD and the
SPD systems, this section reports the results regarding the dynamic response of a seven-storey
structure subjected to seismic excitation.

11.1. The reference structure

The structure considered is the seven-storey shear-type structure represented in Fig. 8. This
structure (as those described in Section 4 for which all the demonstrations of the previous sections
were carried out) is characterised by a lateral stiffness k of the vertical elements connecting
adjacent storeys and a floor mass m which do not vary along the height of the building. The
specific values of k and m are respectively k ¼ 2:8� 108 N=m and m ¼ 1:5� 105 kg. The reference
circular frequency o0 is equal to 43.20 rad/s. Interstorey height is equal to 3.3m.
Table 1 gives the periods of vibration Ti, the normalised circular frequencies Oi and the

eigenvalues Li of the reference structure. Note that, for N ¼ 7, p (number of roots Lip1) is equal
to 7þ2

3

� �
¼ 3 (L1 ¼ 0:044o1, L2 ¼ 0:382o1, L3 ¼ 1:000p1).
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Fig. 8. Reference seven-storey shear-type structure.

Table 1

Periods of vibration Ti, normalised circular frequencies Oi and eigenvalues Li of the reference structure

Mode of vibration

1 2 3 4 5 6 7

Ti [s] 0.696 0.235 0.145 0.109 0.090 0.080 0.074

Oi [rad/s] 0.209 0.618 1.000 1.338 1.618 1.827 1.956

Li 0.044 0.382 1.000 1.791 2.618 3.338 3.827

T. Trombetti, S. Silvestri / Journal of Sound and Vibration 292 (2006) 21–5840
The structure is equipped with equal ‘‘total size’’ MPD and SPD systems made up of seven
equally sized dampers, each one characterised by cj ¼ c0 ¼ 2:5� 106 N s=m, for which
c̄ ¼ 1:75� 107 N s=m. The reference damping ratio x0 is equal to 0.192.
For illustrative examples of the dynamic behaviours of structures equipped with MPD and SPD

systems having other physical characteristics (such as lateral stiffness of the vertical elements
connecting adjacent storeys which varies along the building height) the interested reader is
referred to other published research works of the authors [17–20, 30].

11.2. The modal damping ratios of the structure

This section illustrates some physical properties of the modal damping ratios which are
independent from the type of excitation. Fig. 9 and Table 2 show the modal damping ratios of the
reference structure equipped with the MPD and the SPD systems.
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Fig. 9. Modal damping ratios for the seven-storey reference structure equipped with MPD system (black) and SPD

system (white).

Table 2

Modal damping ratios of the MPD and the SPD structures

System Mode of vibration

1 2 3 4 5 6 7

MPD 0.922 0.312 0.192 0.144 0.119 0.105 0.098

SPD 0.040 0.119 0.192 0.258 0.312 0.352 0.377
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As anticipated by the theoretical findings of the previous sections:
�
 the modal damping ratio of the first mode of vibration of the MPD structure is far larger than
that of the SPD structure ðxMPD

1 ¼ 0:92240:040 ¼ xSPD1 Þ,

�
 xMPD

2 ¼ 0:31240:119 ¼ xSPD2 , as anticipated by Eq. (62),
�
 xMPD
3 ¼ 0:192X0:192 ¼ xSPD3 , as anticipated by Eq. (63) and by p ¼ 3 and L3 ¼ 1,
�
 xMPD
i oxSPDi , for i ¼ 4, 5, 6, 7.

As per the results of Section 8.4:
�
 xMPD
1 ¼ 0:92240:508 ¼ 0:192

ffiffiffi
7
p
¼ x0

ffiffiffiffiffi
N
p

,

�
 xSPD1 ¼ 0:040o0:073 ¼ 0:192ffiffi

7
p ¼

x0ffiffiffi
N
p ,
�
 xSPD1

xMPD
1

¼ 0:040
0:922 ¼ 0:043o0:143 ¼ 1

7
¼ 1

N
,ffiffiffiffiffiffiffiffiq ffiffiffiffiffiffiffiffiffiffiq
�
 xMPD
1 ¼ 0:922ffi 1:016 ¼ 0:192 72þ7

2
¼ x0 N2þN

2
,
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�

�

�

xSPD1 ¼ 0:040ffi 0:036 ¼ 0:192
ffiffiffiffiffiffiffiffi
2

72þ7

q
¼ x0

ffiffiffiffiffiffiffiffiffiffi
2

N2þN

q
,

�
 xSPD1

xMPD
1

¼ 0:040
0:922 ¼ 0:043ffi 0:036 ¼ 2

72þ7
¼ 2

N2þN
.

As per the results of Section 9 (Eq. (60)):
�
 xSPD5

xMPD
1

¼ 0:312
0:922 ¼ 0:338o1:
Also, the largest modal damping ratio of the SPD is substantially smaller than the largest
damping ratio of the MPD system
�

xSPDð Þmax

xMPDð Þmax

¼
xSPD7

xMPD
1

¼ 0:377
0:922 ¼ 0:409o1:
As per the results of Section 10:
�
 xMPD
1 xSPD1 ¼ 0:922 � 0:040 ¼ 0:037 ¼ 0:1922 ¼ x20,
�
 xMPD
2 xSPD2 ¼ 0:312 � 0:119 ¼ 0:037 ¼ 0:1922 ¼ x20,
�
 xMPD
3 xSPD3 ¼ 0:192 � 0:192 ¼ 0:037 ¼ 0:1922 ¼ x20,
�
 xMPD
4 xSPD4 ¼ 0:144 � 0:258 ¼ 0:037 ¼ 0:1922 ¼ x20,
�
 xMPD
5 xSPD5 ¼ 0:119 � 0:312 ¼ 0:037 ¼ 0:1922 ¼ x20,
�
 xMPD
6 xSPD6 ¼ 0:105 � 0:352 ¼ 0:037 ¼ 0:1922 ¼ x20,
�
 xMPD
7 xSPD7 ¼ 0:098 � 0:377 ¼ 0:037 ¼ 0:1922 ¼ x20,
xMPD
g:s:

xSPDg:s:

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9222 þ 0:3122 þ 0:1922 þ 0:1442 þ 0:1192 þ 0:1052 þ 0:0982

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0402 þ 0:1192 þ 0:1922 þ 0:2582 þ 0:3122 þ 0:3522 þ 0:3772

p ¼
1:020

0:695

¼ 1:468 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72 þ 7

4 � 7� 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þN

4N � 2

s
.

Also, the sum of all damping ratios (representative of a ‘‘global’’ damping, if all modes of
vibration had the same importance in determining the overall system response) of the MPD
system is larger than that of the SPD one:
�

xMPD
� �

tot
¼
P7
i¼1

xMPD
i ¼ 0:922þ 0:312þ 0:192þ 0:144þ 0:119þ 0:105þ 0:098 ¼ 1:892,
xSPD
� �

tot
¼
P7
i¼1

xSPDi ¼ 0:040þ 0:119þ 0:192þ 0:258þ 0:312þ 0:352þ 0:377 ¼ 1:650.
11.3. The damping properties of the structure under base (earthquake) excitation

For the generic N-storey linear elastic shear-type frame structure of Fig. 1 subjected to a
horizontal (earthquake) input acceleration €ug tð Þ, the equations of motions can be written, in time
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domain, as follows [15,16]:

M€u tð Þ þ C_u tð Þ þ Ku tð Þ ¼ �M � 1 � €ug tð Þ, (68)

where 1 is a column vector of order N with each element equal to unity (influence vector).
It is worth recalling that, for structures subjected to base excitation, the first modes of vibration

are the most important ones in the determination of the global response of the structure.
With reference to the modal analysis, in order to identify the relative importance of the different

modes of vibrations in the determination of the global response of the structure, it is a common
practice to define the modal contribution factor, r̄n, (a measure of the contribution of the nth
mode to a generic response quantity r) as follows [16]:

r̄n ¼
rstn
rst

, (69)

where
�

�

rst is the static value of the response quantity r due to a set s of static forces applied to the
structure; s being defined as s ¼M � 1;

�
 rstn (nth modal static response) is the static value of the response quantity r due to a set sn of
static forces applied to the structure; sn being defined as sn ¼ GnM/n;

�
 /n is the eigenvector corresponding to the nth modal frequency of the system;

�
 Gn ¼

/T
n �M�1

/T
n �M�/n

is the modal participation factor.
The N modal contribution factors, r̄n defined above, are characterised by the following three
properties [16]:
�
 they are dimensionless;

�
 they are independent of how the modes /n are normalised;
their sum over all modes is unity (i.e.
PN
i¼1

r̄n ¼ 1).
If base shear, Vb, is assumed as significant response quantity [16], the modal contribution
factor, r̄n, becomes V̄bn, as given by

V̄bn ¼
V st

bn

V st
b

¼
M�

nPN
n¼1

M�
n

, (70)

where M�
n ¼ Gn

PN
j¼1

mjfjn represents the nth base shear effective modal mass [16] (with fjn being

the jth component of /n).
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Fig. 10. Modal contribution factors, V̄bn, for the seven-storey reference structure.

Table 3

Modal contribution factors for the seven-storey reference structure

Mode of vibration

1 2 3 4 5 6 7

0.8621 0.0902 0.0286 0.0118 0.0050 0.0019 0.0004

T. Trombetti, S. Silvestri / Journal of Sound and Vibration 292 (2006) 21–5844
Fig. 10 and Table 3 show the modal contribution factors for the seven-storey reference
structure. As it is the case for most of common shear-type structures, most of the contributions
come from the first modes of vibration.
Note that, in the first mode of vibration which accounts for about 86% of the overall system

response, the MPD system is characterised by a modal damping ratio of about 92%, while the
SPD system is characterised by a modal damping ratio of about 4%. On the other hand, the 4th,
5th, 6th and 7th modes of vibration, for which the SPD system is characterised by modal damping
ratios larger than those of the MPD system, together account for less than 2% of the overall
system response.
This suggests that the seismic performances of the reference structure equipped with the MPD

system are far superior than those of the same structure equipped with the SPD system.

11.4. The dynamic response of the structure under base (earthquake) excitation

Figs. 11, 12, 13 and 14 show respectively the profiles of peak floor displacements (PFD), peak
floor velocities (PFV), peak floor accelerations (PFA) and peak interstorey drift angles (PIDA), as
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Fig. 11. Peak floor displacements (PFD) developed by the seven-storey reference structure equipped with MPD system

( ) and SPD system ( ) under the earthquakes: (a) Imperial Valley, 1940 (El Centro record, NS

component 2701, PGA ¼ 0:215 g), (b) Kern County, 1952 (Taft Lincoln School record, EW component 211,

PGA ¼ 0:156 g), (c) Kobe, 1995 (Kobe University record, NS component 901, PGA ¼ 0:310 g), (d) Northridge, 1994

(Camarillo record, EW component 1801, PGA ¼ 0:125 g).

T. Trombetti, S. Silvestri / Journal of Sound and Vibration 292 (2006) 21–58 45
obtained using as €ug tð Þ the following historically recorded earthquake ground motions: Imperial
Valley, 1940 (El Centro record, NS component 2701, PGA ¼ 0:215 g), Kern County, 1952 (Taft
Lincoln School record, EW component 211, PGA ¼ 0:156 g), Kobe, 1995 (Kobe University
record, NS component 901, PGA ¼ 0:310 g) and Northridge, 1994 (Camarillo record, EW
component 1801, PGA ¼ 0:125 g).
Notice how, in all cases considered, the response parameters of the structure equipped with the

MPD system are always substantially smaller (�80%) than the corresponding ones of the
structure equipped with the SPD system.



ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

(a) PFV [m/s]

st
or

ey

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

(b) PFV [m/s]
st

or
ey

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

(c) PFV [m/s]

st
or

ey

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

(d) PFV [m/s]

st
or

ey

Fig. 12. Peak floor velocities (PFV) developed by the seven-storey reference structure equipped with MPD system

( ) and SPD system ( ) under the earthquakes: (a) Imperial Valley, 1940 (El Centro record, NS

component 2701, PGA ¼ 0:215 g), (b) Kern County, 1952 (Taft Lincoln School record, EW component 211,

PGA ¼ 0:156 g), (c) Kobe, 1995 (Kobe University record, NS component 901, PGA ¼ 0:310 g), (d) Northridge, 1994

(Camarillo record, EW component 1801, PGA ¼ 0:125 g).
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This is a numerical confirmation of the superior dissipative properties (with respect to
earthquake dynamic inputs) of the MPD system with respect to the equal ‘‘total size’’ SPD system
identified on the basis of the physical analyses developed in this paper.
In summary, the above results allow to propose the implementation of MPD systems in actual

building structures (as per Figs. 3a and 4) in order to obtain reductions (up to about 80%) in the
seismic response of shear-type buildings with respect to the equally sized (equal ‘‘total size’’
constraint) SPD systems commonly adopted in the seismic design of building structures.
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Fig. 13. Peak floor accelerations (PFA) developed by the seven-storey reference structure equipped with MPD system

( ) and SPD system ( ) under the earthquakes: (a) Imperial Valley, 1940 (El Centro record, NS

component 2701, PGA ¼ 0:215 g), (b) Kern County, 1952 (Taft Lincoln School record, EW component 211,

PGA ¼ 0:156 g), (c) Kobe, 1995 (Kobe University record, NS component 901, PGA ¼ 0:310 g), (d) Northridge, 1994

(Camarillo record, EW component 1801, PGA ¼ 0:125 g).
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12. Conclusions

The dynamic properties of mdof shear-type structures, characterised by constant values of
lateral stiffness and floor mass, and equipped with manufactured viscous dampers that lead to
Rayleigh damping matrices, are investigated in this paper.
The authors firstly identify that the mass proportional and stiffness proportional components

of the Rayleigh damping systems correspond to two physically separated and independently
implementable systems, here referred to as mass proportional damping (MPD) system and
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Fig. 14. Peak inter-storey drift angles (PIDA) developed by the seven-storey reference structure equipped with MPD

system ( ) and SPD system ( ) under the earthquakes: (a) Imperial Valley, 1940 (El Centro record, NS

component 2701, PGA ¼ 0:215 g), (b) Kern County, 1952 (Taft Lincoln School record, EW component 211,

PGA ¼ 0:156 g), (c) Kobe, 1995 (Kobe University record, NS component 901, PGA ¼ 0:310 g), (d) Northridge, 1994

(Camarillo record, EW component 1801, PGA ¼ 0:125 g).
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stiffness proportional damping (SPD) system, respectively. These two systems being characterised
by a specific and different damper placement.
Secondly, under the equal ‘‘total size’’ constraint (the total size being defined as the sum

of the damping coefficients of all viscous dampers added to the structure), it is demonstrated here ,
from basic physics, that the first modal damping ratio provided by the MPD system, xMPD

1 ,
is always larger than the first modal damping ratio provided by the corresponding SPD
system, xSPD1 .
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Demonstrations for an upper bound and a close approximation of the ratio xSPD1

�
xMPD
1 as a

function of the total number of storeys N are also provided herein and show that the ratio
xSPD1

�
xMPD
1 decreases with increasing N.

An exact close-form expression for the ratio between (a) the geometrical sum of all xMPD
i and

(b) the geometrical sum of all xSPDi is given herein and shows that this ratio increases with
increasing N.
The results obtained are fundamental because they provide an analytical demonstration for the

fact that shear-type structures equipped with MPD systems, when excited at the base, show, in
general, a higher damping efficiency than structures equipped with equal ‘‘total size’’ SPD
systems. This observation had been already identified by the authors in previous research works
carried out through numerical simulations [17–20, 30] and is synthetically presented herein
through an illustrative numerical example obtained with reference to a realistic seven-storey
shear-type structure.
Acknowledgements

The authors gratefully acknowledge Prof. Cristina Fiocchi, Department of Pure and Applied
Mathematics, University of Modena and Reggio Emilia, Italy, for her contributions.
Appendix. Demonstrations of partial results

This appendix provides detailed mathematical demonstrations for the partial results used in the
demonstrations presented in this paper.
A.1. Demonstration that pN ðLÞ ¼ ð2� LÞpN�1ðLÞ � pN�2ðLÞ

Let us now derive a recursive formula for the expression of the characteristic polynomial of the
N �N matrix AN as a function of the characteristic polynomials of the ðN � 1Þ � ðN � 1Þ matrix
AN�1 and the ðN � 2Þ � ðN � 2Þ matrix AN�2.
The expression of the numerical matrix AN given by Eq. (27) allows to express the characteristic

polynomial of Eq. (30) in the following form:

pN Lð Þ ¼ det

2� L �1 0 ::: 0

�1 2� L �1 0 ::: 0

0 �1 2� L ::: ::: :::

::: 0 ::: ::: :::

::: ::: �1 0

�1 2� L �1

0 ::: ::: 0 �1 1� L

2
666666666664

3
777777777775

N�N

. (A.1)
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By using the determinant rules, it follows that

pN Lð Þ ¼ 2� Lð Þ �1ð Þ1þ1 det

2� L �1 0 ::: 0

�1 2� L �1 0 ::: 0

0 �1 2� L ::: ::: :::

::: 0 ::: ::: :::

::: ::: �1 0

�1 2� L �1

0 ::: ::: 0 �1 1� L

2
666666666666664

3
777777777777775

N�1ð Þ� N�1ð Þ

þ �1ð Þ �1ð Þ1þ2 det

�1 �1 0 ::: 0

0 2� L �1 0 ::: 0

0 �1 2� L ::: ::: :::

::: 0 ::: ::: :::

::: ::: �1 0

�1 2� L �1

0 ::: ::: 0 �1 1� L

2
666666666666664

3
777777777777775

N�1ð Þ� N�1ð Þ

. ðA:2Þ

Eq. (A.2) can be rewritten as

pN Lð Þ ¼ 2� Lð ÞpN�1 Lð Þ þ det

�1 �1 0 ::: 0

0 2� L �1 0 ::: 0

0 �1 2� L ::: ::: :::

::: 0 ::: ::: :::

::: ::: �1 0

�1 2� L �1

0 ::: ::: 0 �1 1� L

2
666666666664

3
777777777775

N�1ð Þ� N�1ð Þ

, (A.3)
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where pN�1 Lð Þ ¼ det AN�1 � LIN�1ð Þ. By developing the second term on the right-hand side of Eq.
(A.3), it follows that

pN Lð Þ ¼ 2� Lð ÞpN�1 Lð Þ þ �1ð Þ �1ð Þ1þ1 det

2� L �1 0 ::: 0

�1 2� L �1 0 ::: 0

0 �1 2� L ::: ::: :::

::: 0 ::: ::: :::

::: ::: �1 0

�1 2� L �1

0 ::: ::: 0 �1 1� L

2
666666666664

3
777777777775

N�2ð Þ� N�2ð Þ

.

(A.4)

In turn, Eq. (A.4) leads to Eq. (44) of the main text.
A.2. Expression for a0,N

According to the notation of Eq. (31), a0,N is the term of degree 0 of the polynomial pN Lð Þ ¼
det AN � LINð Þ of Eq. (30), i.e. it is the value assumed by the polynomial for L ¼ 0. Therefore,
from Eq. (30):

a0;N ¼ pN 0ð Þ ¼ det AN . (A.5)

We want to prove that Eq. (32.1) holds for any value of N.
For the case N ¼ 2:

a0;2 ¼ p2 0ð Þ ¼ det A2 ¼ det
2 �1

�1 1

� �
¼ 2� 1 ¼ 1. (A.6)

For the case N ¼ 3:

a0;3 ¼ p3 0ð Þ ¼ det A3 ¼ det

2 �1 0

�1 2 �1

0 �1 1

2
64

3
75 ¼ 4� 2� 1 ¼ 1. (A.7)

Let us now demonstrate that Eq. (32.1) is true by induction, i.e. if it is true for N�1 and for N�2
(hypotheses), then it is true also for N (thesis). Let us therefore assume as hypotheses the
following:

ðhypothesisÞ a0;N�1 ¼ 1, (A.8)

ðhypothesisÞ a0;N�2 ¼ 1. (A.9)

Eqs. (44), (A.5), (A.8) and (A.9) lead to

a0;N ¼ pN 0ð Þ ¼ 2pN�1 0ð Þ � pN�2 0ð Þ ¼ 2a0;N�1 � a0;N�2 ¼ 2� 1� 1 ¼ 1 (A.10)
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which verifies the thesis of Eq. (32.1). Given that Eqs. (A.6) and (A.7) show that Eq. (32.1) is true
for the two smallest considered N (N ¼ 2 and 3), it follows that Eq. (32.1) holds for any value
of N.
A.3. Expression for a1,N

According to the notation of Eq. (31), a1,N is the multiplicative coefficient of the term of degree
1 of the polynomial pN Lð Þ ¼ det AN � LINð Þ of Eq. (30). We want to prove that Eq. (32.2) holds
for any value of N.
For the case N ¼ 2:

p2 Lð Þ ¼ det
2� L �1

�1 1� L

� �
¼ 2� Lð Þ 1� Lð Þ � 1 ¼ 1� 3Lþ L2 (A.11)

and therefore a1;N ¼ a1;2 ¼ �3. In this case, Eq. (32.2) is verified as

a1;2 ¼ �
2 2þ 1ð Þ

2
¼ �3. (A.12)

For the case N ¼ 3:

p3 Lð Þ ¼ det

2� L �1 0

�1 2� L �1

0 �1 1� L

2
64

3
75 ¼ 1� 6Lþ 5L2

� L3 (A.13)

and therefore a1;N ¼ a1;3 ¼ �6. In this case, Eq. (32.2) is verified as

a1;3 ¼ �
3 3þ 1ð Þ

2
¼ �6. (A.14)

Let us now demonstrate that Eq. (32.2) is true by induction, i.e. if it is true for N�1 and for N�2
(hypotheses), then it is true also for N (thesis). Let us therefore assume as hypotheses the
following:

ðhypothesisÞ a1;N�1 ¼ �
N�1ð ÞN

2
; (A.15)

ðhypothesisÞ a1;N�2 ¼ �
N�2ð Þ N�1ð Þ

2
: (A.16)

From Eq. (44), the term of degree 1, a1,NL, of the polynomial pN(L) can be seen as the sum of
three contributions r1, r2 and r3:

a1;N ¼ r1 þ r2 þ r3, (A.17)

where
�
 r1 is equal to 2 multiplied by the coefficient of the term of degree 1 of the polynomial pN�1(L),
i.e.

r1 ¼ 2a1;N�1 (A.18)



ARTICLE IN PRESS

T. Trombetti, S. Silvestri / Journal of Sound and Vibration 292 (2006) 21–58 53
which from Eq. (A.15) becomes

r1 ¼ 2 �
N � 1ð ÞN

2

� �
. (A.19)
�
 r2 is equal to (�1) multiplied by the term of degree 0 of the polynomial pN�1(L), i.e.

r2 ¼ �1ð Þa0;N�1 (A.20)

which from Eq. (32.1) becomes:

r2 ¼ �1ð Þ1. (A.21)
�
 r3 is equal to (�1) multiplied by the coefficient of the term of degree 1 of the polynomial
pN�2(L), i.e.

r3 ¼ �1ð Þa1;N�2 (A.22)

which from Eq. (A.16) becomes

r3 ¼ �1ð Þ �
N � 2ð Þ N � 1ð Þ

2

� �
. (A.23)

From Eqs. (A.17), (A.19), (A.21) and (A.23):

a1;N ¼ �N N � 1ð Þ � 1þ
N � 2ð Þ N � 1ð Þ

2
¼ �

N N þ 1ð Þ

2
(A.24)

which verifies the thesis of Eq. (32.2). Given that Eqs. (A.12) and (A.14) show that Eq. (32.2) is
true for the two smallest considered N (N ¼ 2 and 3), it follows that Eq. (32.2) holds for any value
of N.
A.4. Expression for aN,N

According to the notation of Eq. (31), aN,N is the multiplicative coefficient of the term of degree
N of the polynomial pN Lð Þ ¼ det AN � LINð Þ of Eq. (30). The term of degree N, aNL

N, derives
from the multiplication of all N diagonal terms (the only ones containing L). As in all diagonal
terms L is multiplied by –1, it results that Eq. (32.3) holds for any value of N.
A.5. Expression for aN�1,N

According to the notation of Eq. (31), aN�1,N is the multiplicative coefficient of the term of
degree N�1 of the polynomial pN Lð Þ ¼ det AN � LINð Þ of Eq. (30). We want to prove that
Eq. (32.4) holds for any value of N.
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For the case N ¼ 2:

p2 Lð Þ ¼ det
2� L �1

�1 1� L

� �
¼ 2� Lð Þ 1� Lð Þ � 1 ¼ 1� 3Lþ L2 (A.25)

and therefore aN�1;N ¼ a1;2 ¼ �3. In this case, Eq. (32.4) is verified as

a1;2 ¼ �1ð Þ
2�1 2� 2� 1ð Þ ¼ �3. (A.26)

Let us now demonstrate that Eq. (32.4) is true by induction, i.e. if it is true for N�1 (hypothesis),
then it is true also for N (thesis). Let us therefore assume as hypothesis the following:

ðhypothesisÞ a N�1ð Þ�1; N�1ð Þ ¼ �1ð Þ
N�1ð Þ�1 2 N � 1ð Þ � 1ð Þ: (A.27)

The term of degree N�1, aN�1,NL
N�1, of the polynomial of Eq. (44), comes only from the first

term on the right-hand side of Eq. (44), i.e. from (2�L)pN�1(L), as the term with the highest
degree of pN�2(L) is L

N�2.
In particular, the coefficient of the term of degree N�1 is the sum of the two contributions q1

and q2:

aN�1;N ¼ q1 þ q2, (A.28)

where
�
 q1 is equal to 2 multiplied by the coefficient of the term of degree N�1 of the polynomial
pN�1(L), i.e.

q1 ¼ 2aN�1;N�1 (A.29)

which from Eq. (32.3) becomes

q1 ¼ 2 �1ð ÞN�1. (A.30)
�
 q2 is equal to (�1) multiplied by the coefficient of the term of degree N�2 of the polynomial
pN�1(L), i.e.

q2 ¼ �1ð ÞaN�2;N�1 (A.31)

which from Eq. (A.27) becomes

q2 ¼ �1ð Þ �1ð Þ
N�2 2 N � 1ð Þ � 1ð Þ. (A.32)

From Eqs. (A.28), (A.30) and (A.32)

aN�1;N ¼ 2 �1ð ÞN�1 þ �1ð Þ �1ð ÞN�2 2 N � 1ð Þ � 1ð Þ ¼ �1ð ÞN�1 2N � 1ð Þ (A.33)

which verifies the thesis of Eq. (32.4). Given that Eq. (A.26) shows that Eq. (32.4) is true for the
smallest considered N ðN ¼ 2Þ, it follows that Eq. (32.4) holds for any value of N.
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A.6. Demonstration that f 0N Lð Þ40

We want to prove that

ðthesisÞ f 0N Lð Þ40: (A.34)

Let us first verify Eq. (A.34) for the smallest value of N taken into consideration ðN ¼ 2Þ:

f 2 Lð Þ ¼
p0 Lð Þ
p1 Lð Þ

. (A.35)

From Eqs. (31), (32.1) and (32.2)

p0 Lð Þ ¼ 1 and p1 Lð Þ ¼ 1� L (A.36)

which lead to

f 02 Lð Þ ¼
1

1� Lð Þ
2

(A.37)

which is larger than zero for any value of L.
Let us now demonstrate that Eq. (A.34) is true by induction, i.e. if it is true for N�1

(hypothesis), then it is true also for N (thesis). Let us therefore assume as hypothesis the
following:

ðhypothesisÞ f 0N�1 Lð Þ40: (A.38)

From Eqs. (43) and (44)

f N Lð Þ ¼
pN�2 Lð Þ
pN�1 Lð Þ

¼
1

pN�1 Lð Þ
pN�2 Lð Þ

¼
1

2�Lð ÞpN�2 Lð Þ�pN�3 Lð Þ
pN�2 Lð Þ

¼
1

2� Lð Þ �
pN�3 Lð Þ
pN�2 Lð Þ

¼
1

2� Lð Þ � f N�1 Lð Þ
ðA:39Þ

and

f 0N Lð Þ ¼
1þ f 0N�1 Lð Þ

2� Lð Þ � f N�1 Lð Þ
� �2 (A.40)

which, given the hypothesis of Eq. (A.38), is larger than zero for any value of L, thus verifying the
thesis of Eq. (A.34). Given that Eq. (A.37) shows that Eq. (A.34) is true for the smallest
considered N ðN ¼ 2Þ, it follows that Eq. (A.34) holds for any value of N.
A.7. Demonstration that f 00N Lð Þ 40 for KA(0,K1,N�1)

We want to prove that

ðthesisÞ f 00N Lð Þ40 for L 2 0;L1;N�1

� �
. (A.41)
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Let us first verify Eq. (A.41) for the smallest value of N taken into consideration ðN ¼ 2Þ. From
Eq. (A.37)

f 002 Lð Þ ¼
2

1� Lð Þ
3

(A.42)

which is larger than zero for LA(0,1). Given that from Eq. (A.36) L1,1 ¼ 1, the thesis of Eq.
(A.41) is verified.
Let us now demonstrate that Eq. (A.41) is true by induction, i.e. if it is true for N�1

(hypothesis), then it is true also for N (thesis). Let us therefore assume as hypothesis the following:

ðhypothesisÞ f 00N�1 Lð Þ40 for L 2 0;L1;N�2

� �
: (A.43)

From Eq. (A.40)

f 00N Lð Þ ¼ t1 Lð Þ þ t2 Lð Þ, (A.44)

where

t1 Lð Þ ¼
2 1þ f 0N�1 Lð Þ
� �2

2� Lð Þ � f N�1 Lð Þ
� �3 (A.45)

and

t2 Lð Þ ¼
f 00N�1 Lð Þ

2� Lð Þ � f N�1 Lð Þ
� �2 . (A.46)

t1(L)40 if (2�L)�fN�1(L)40, which corresponds to

g Lð Þ4f N�1 Lð Þ. (A.47)

Given that gð0Þ ¼ 2 and f N�1ð0Þ ¼ 1 and that, by definition, the first intersection between gðLÞ
and f N�1ðLÞ occurs at L ¼ L1;N�1, it follows that [29]

g Lð Þ4f N�1 Lð Þ for L 2 0;L1;N�1

� �
(A.48)

which implies

t1 Lð Þ40 for L 2 0;L1;N�1

� �
. (A.49)

Given the hypothesis of Eq. (A.43), t2(L)40 for L 2 0;L1;N�2

� �
and, due to Eq. (45), all the more

reason

t2 Lð Þ40 for L 2 0;L1;N�1

� �
. (A.50)

From Eqs. (A.44), (A.49) and (A.50), the thesis of Eq. (A.41) is verified. Given that Eq. (A.42)
shows that Eq. (A.41) is true for the smallest considered N ðN ¼ 2Þ, it follows that Eq. (A.41)
holds for any value of N.
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A.8. Demonstration that f 0N ð0Þ ¼ N � 1

We want to prove that

ðthesisÞ f 0N 0ð Þ ¼ N � 1 . (A.51)

Let us first verify Eq. (A.51) for the smallest value of N taken into consideration ðN ¼ 2Þ. From
Eq. (A.37)

f 02 0ð Þ ¼ 1 (A.52)

which verifies the thesis of Eq. (A.51).
Let us now demonstrate that Eq. (A.51) is true by induction, i.e. if it is true for N�1

(hypothesis), then it is true also for N (thesis). Let us therefore assume as hypothesis the following:

ðhypothesisÞ f 0N�1 0ð Þ ¼ N � 1ð Þ � 1 ¼ N � 2: (A.53)

From Eqs. (A.40), (A.53) and given that f N�1ð0Þ ¼ 1

f 0N 0ð Þ ¼
1þN � 2

2� 1½ �2
¼ N � 1 (A.54)

which verifies the thesis of Eq. (A.51). Given that Eq. (A.52) shows that Eq. (A.51) is true for the
smallest considered N ðN ¼ 2Þ, it follows that Eq. (A.51) holds for any value of N.
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